
Our Current Coding Standard
Version: 0.1
Revised: 2018-11-23

/* --<Header>-
 Name: fahr2cels.c
 Title: Fahrenheit to Celsius temperature converter.

 Group: TI-81
 Student: Petrenko O.I.
 Written: 2018-11-22
 Revised: 2018-11-23

 Description: Write a program that requests the user to enter a Fahrenheit
 temperature. The program should read the temperature as a type
 double number and pass it as an argument to a user-supplied
 function called Temperatures() . This function should calculate
 the Celsius equivalent and the Kelvin equivalent and display all
 three temperatures with a precision of two places to the right
 of the decimal. It should identify each value with the
 temperature scale it represents. Here is the formula for
 converting Fahrenheit to Celsius:
 Celsius = 5.0 / 9.0 * (Fahrenheit - 32.0)
 --</Header>-*/

#include <stdio.h>
#include <stdlib.h>
void prn_temp(float cels, float fahr);
int main(void) {
 float celsius, fahrenheit;
 printf("\nEnter temperature in celsius: ");
 scanf("%f", &celsius);
 fahrenheit = (1.8) * celsius + 32;
 prn_temp(celsius, fahrenheit);
 return 0;
}

/* ---[<]-
 Function: prn_temp
 Synopsis: Prints temperature in F and C.
 ---[>]-*/
void prn_temp(float celsius, float fahrenheit) {
 printf("\n%f deg celsius is %f fahrenheit\n", celsius, fahrenheit);
}

C Coding Standard: Formatting

Brace Placement

Of the three major brace placement strategies one is recommended:
 if (condition) { while (condition) {

 } }

do {
 v = x + y;
 w = y + 2;
} while (1);

When Braces are Needed
All if, while and do statements must either have braces or be on a single line.

Always Uses Braces Form
All if, while and do statements require braces even if there is only a single
statement within the braces. For example:
if (1 == somevalue) {
 somevalue = 2;
}

Justification
It ensures that when someone adds a line of code later there are already braces and
they don't forget. It provides a more consistent look. This doesn't affect execution
speed. It's easy to do.

One Line Form
if (1 == somevalue) somevalue = 2;

Justification
It provides safety when adding new lines while maintainng a compact readable form.

If Then Else Formatting

Common approach is:
while (1) {
 if (condition) {
 somevalue = 2;
 } else if (condition) {
 w = y + 2;
 } else {
 v = x + y;
 }
}
If you have else if statements then it is usually a good idea to always have an else
block for finding unhandled cases. Maybe put a log message in the else even if there
is no corrective action taken.

switch Formatting
- Falling through a case statement into the next case statement shall be permitted as
long as a comment is included.
- The default case should always be present and trigger an error if it should not be
reached, yet is reached.
- If you need to create variables put all the code in a block.
Example
 switch (...) {
 case 1:
 ...
 /* comments */

 case 2: {
 int v;
 ...

 }
 break;

 default:
 }

Pointer Variables
place the * close to the variable name not pointer type
Example
 char *name= NULL;

 char *name, address;

Variable Names

use all lower case letters

use '_' as the word separator.

Example:
 message
 time_of_error

Global Variables

Global variables should be prepended with a 'g_'.
Global variables should be avoided whenever possible.

Example:
 int g_log;

Global Constants
Global constants should be all caps with '_' separators.

Justification
It's tradition for global constants to named this way. You must be careful to not
conflict with other global #defines and enum labels.

Example:
 const int A_GLOBAL_CONSTANT= 5;

